Heat Walk: Robust Salient Segmentation of Non-rigid Shapes
نویسندگان
چکیده
Segmenting three dimensional objects using properties of heat diffusion on meshes aim to produce salient results. The few existing algorithms based on heat diffusion do not use the full knowledge that can be gained from heat diffusion and are sensitive to varying kinds of perturbations. Our simple algorithm, Heat Walk, converts the implicit information in the heat kernel to explicit knowledge about the pathways for maximum heat flow capacity. We develop a two stage strategy for segmentation. In the first stage we quickly identify regions which are dominated by heat accumulators by employing a greedy algorithm. The second stage partitions out dissipative regions from the previously discovered accumulative regions by using a KL-divergence based criterion. The resulting algorithm is both independent of human intervention and fast because of the globally aware directed walk along the maximal heat flow capacity. Extensive experimental evidence shows the method is robust to a variety of noise factors including topological short circuits, surface holes, pose variations, variations in tessellation, missing features, scaling, as well as normal and shot noise. Comparison with the Princeton Segmentation Benchmark (PSB) shows that our method is comparable with state of the art segmentation methods and has additional advantages of being robust and self contained. Based upon theoretical insight the convergence and stability of the Heat Walk is shown.
منابع مشابه
Group-Valued Regularization Framework for Motion Segmentation of Dynamic Non-rigid Shapes
Understanding of articulated shape motion plays an important role in many applications in the mechanical engineering, movie industry, graphics, and vision communities. In this paper, we study motion-based segmentation of articulated 3D shapes into rigid parts. We pose the problem as finding a group-valued map between the shapes describing the motion, forcing it to favor piecewise rigid motions....
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملMatching 3D Shapes Using 2D Conformal Representations
Matching 3D shapes is a fundamental problem in Medical Imaging with many applications including, but not limited to, shape deformation analysis, tracking etc. Matching 3D shapes poses a computationally challenging task. The problem is especially hard when the transformation sought is diffeomorphic and non-rigid between the shapes being matched. In this paper, we propose a novel and computationa...
متن کاملRecovering Articulated Non-rigid Shapes, Motions and Kinematic Chains from Video
JINGYU YAN: Recovering Articulated Non-rigid Shapes, Motions and Kinematic Chains from Video. (Under the direction of Marc Pollefeys.) Recovering articulated shape and motion, especially human body motion, from video is a challenging problem with a wide range of applications in medical study, sport analysis and animation, etc. Previous work on articulated motion recovery generally requires prio...
متن کاملDiffusion symmetries of non-rigid shapes
Detection and modeling of self-similarity and symmetry is important in shape recognition, matching, synthesis, and reconstruction. While the detection of rigid shape symmetries is well-established, the study of symmetries in nonrigid shapes is a much less researched problem. A particularly challenging setting is the detection of symmetries in non-rigid shapes affected by topological noise and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 30 شماره
صفحات -
تاریخ انتشار 2011